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Maps and rooted maps
I A map is rooted by distinguishing an edge, an end vertex

of the edge, and a side of the edge.

I Two rooted maps are equivalent if there is a
homeomorphism from the surface to itself which takes
one map to the other and respects the rooting.

I Tutte showed that a rooted map has trivial automorphism
group.



Maps and rooted maps
I A map is rooted by distinguishing an edge, an end vertex

of the edge, and a side of the edge.
I Two rooted maps are equivalent if there is a

homeomorphism from the surface to itself which takes
one map to the other and respects the rooting.

I Tutte showed that a rooted map has trivial automorphism
group.



Maps and rooted maps
I A map is rooted by distinguishing an edge, an end vertex

of the edge, and a side of the edge.
I Two rooted maps are equivalent if there is a

homeomorphism from the surface to itself which takes
one map to the other and respects the rooting.

I Tutte showed that a rooted map has trivial automorphism
group.



The map asymptotics constants

Let Mg(n) be the number of n-edge rooted maps on an
orientable surface of genus g. Bender-Canfield (1986)
obtained, for each fixed g and as n→∞,

Mg(n) ∼ tgn
5(g−1)/212n,

where tg are positive constants.

More generally we have (Gao, 1993)

Mg(n;F) ∼ αtg(βn)5(g−1)/2γn,

where Mg(n;F) is the number of rooted n-edge maps in a
given family F on an orientable surface of genus g, α and β
are constants independent of g.
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Triangulations and quadrangulations

Tg(n) ∼ 3tg
(
61/5n

)5(g−1)/2
(12
√

3)n, (triangulations with 3n edges)

Qg(n) ∼ 4tg
(
161/5n

)5(g−1)/2
12n. (quadrangulations with 2n edges)

Define

Hn,g = (3n+ 2)Tg(n+ 2− 2g) for n ≥ 1,

H−1,0 = 1/2, H0,0 = 2 and H−1,g = H0,g = 0 for g 6= 0.

Goulden and Jackson (08) derived the following recursion for
(n, g) 6= (−1, 0):

Hn,g =
4(3n+ 2)

n+ 1

(
n(3n−2)Hn−2,g−1+

n−1∑
i=−1

g∑
h=0

Hi,hHn−2−i,g−h

)
.
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Connection with Painlevé I
Define

ug = − 2g−2Γ

(
5g − 1

2

)
tg, u(z) =

∑
g≥0

ugz
−(5g−1)/2.

Using the above recursion and the asymptotic formula for
Tg(n), Bender-Gao-Richmond (08) derived a quadratic
recursion for tg and a second order ODE for a formal power
series defined by tg. Garoufalidis-Le-Marino (08) observed that
our ODE is Painlevé I by a simple transformation, and they
showed

ug =
(5g − 4)(5g − 6)

48
ug−1 −

1

2

g−1∑
h=1

uhug−h, u1 = − 1

48
,

and
u′′(z) = 6u2(z)− 6z.
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Asymptotics of tg

Also

ug ∼ −

(
8
√

3

5

)−2g+1/2

Γ(2g − 1/2)
31/4

2π3/2

×

(
1 +

∑
`≥1

b`
∏̀
k=1

1

2g − 1/2− k

)
,

where b` can be computed recursively.



Nonorientable map asymptotics constant pg

There is a nonorientable map asymptotics constant pg for each
nonorientable surface of Euler genus g = 1− χ/2. Define

vk = 2
k−3
2 Γ

(
5k − 1

4

)
p k+1

2
, v(z) =

∑
k≥0

vkz
−(5k−1)/4.

Garoufalidis-Le-Marino (08) conjectured that

2v′ − v2 + 3u = 0,

from which an asymptotic expression of vg can be obtained.
This conjecture has been proved very recently by Carrell
(2014).
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Connection with rooted binary trees
For a rooted binary tree T , let L(T ) and R(T ), respectively,
denote the left and right subtrees of T . For a rooted binary
tree with n vertices, define X(T ) recursively by

X(T ) = X(L(T )) +X(R(T )) + n2.

Consider the random variable

Yn := n−5/2X(T ),

where T is uniformly distributed among all rooted binary trees
with n vertices. Fill and Kapur (04) showed that Yn has a
limit distribution Y whose moments are

E
(
Y k
)

=

√
π

Γ((5k − 1)/2)
Ck,
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Connection with rooted binary trees

where Ck satisfies the following recursion

Ck =
1

4

k−1∑
j=1

(
k

j

)
CjCk−j +

k

4
(5k− 4)(5k− 6)Ck−1, C1 = 1/2.

Janson (03) studied the distribution of Wiener index of a
random binary tree, and Ck also appears in the expression of
the kth moment of the limit distribution.
The following relation is found by
Bender-Daalhuis-Gao-Richmond-Wormald (10)

tk =
4

25k!Γ((5k − 1)/2)
48−kCk.
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Connection with rooted labelled trees

Chapuy (11) gives a bijection between rooted maps and rooted
trees such that

tg =
1

g!
√
π

2(2−5g)/2E (W g) ,

where the random variable W is defined in terms of the
Integrated Superbrownian Excursion.



Labelled graphs of a given genus

Let Gg(n; k) for the number of labelled k-connected n-vertex
graphs which are embeddable in the orientable surface of
genus g.

For 1 ≤ k ≤ 3 and fixed g, there are positive
constants xk and βk such that (Bender-Gao, 11)

Gg(n; k)

n!
∼ 1

4
βg−1
k tg n

(5g−7)/2x−nk ,

where

x3
.
= 0.04751, x2

.
= 0.03819, x1

.
= 0.03673,

β3
.
= 1.48590 · 105, β2

.
= 7.61501 · 104. β1

.
= 6.87242 · 104.
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Thank you !

On page 140 of Bessis-Itzykson-Zuber (1980):
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